Student's Name:

Lab day \& time: \qquad

Student's Name:
\qquad
Date: \qquad

Photoelectric Effect (E10) - Data Sheets

Activity 1: Measurement of the h/e Ratio and the Work Function.

$$
\begin{equation*}
\left\{e=\text { the charge of an electron }=1.602 \times 10^{-19} \mathrm{C}\right\} \tag{5.5p.}
\end{equation*}
$$

The stopping voltage V_{S} for Mercury line spectrum (on both sides of the white line):

Color	Yellow	Green	Blue	Violet	Ultraviolet
Frequency (Hz)	$5.187 * 10^{14}$	$5.490^{*} 10^{14}$	$6.879 * 10^{14}$	$7.409 * 10^{14}$	$8.203 * 10^{14}$
Filter	Yes - yellow	Yes - green	No	No	No
VS (V) (left side)					
VS (V) (right side)					
Average stopping voltage VsAV (V)					

Create a graph of the average stopping voltage $\boldsymbol{V}_{S A V}$ (on the vertical axis) vs. frequency f (on the horizontal axis). Find the best-fit straight line. Using the slope and the y-intercept values from the graph, calculate the value of the h / e ratio and the work function divided by the charge of electron ϕ / e. Be sure to include units. If you need help with creation of the straightline fit (a "trendline" in Excel), then check the pdf file "How to Make a Straight Line Fit in Excel" available in Brightspace course folder.

The " $(h / e)_{\text {exp }}$ " value calculated from the slope of the stopping voltage $V_{S A V}$ vs. f graph:

$$
(h / e)_{\text {exp }}=\ldots(\mathrm{V} * \mathrm{~s})
$$

Does your value for Planck's constant divided by the charge of electron $(h / e)_{\exp }$ agree with the most accurate experimentally determined value of the $(h / e)_{\text {accurate }}=4.1361 * 10^{-15} \mathrm{~V}^{*}$ s? What is the absolute value of the percent difference between your result and the best experimental value?

$$
\text { Percent difference }=\left|\frac{(h / e)_{\exp }-(h / e)_{\text {accurate }}}{(h / e)_{\text {accurate }}}\right| \times 100 \%=
$$

\qquad

The work function divided by the charge of electron ϕ / e value from the y-intercept of the stopping voltage $V_{S A V}$ vs. f graph (see Eq. 2):

$$
(\phi / e)_{\exp }=\ldots(\mathrm{V})
$$

The equipment manufacturer - PASCO Scientific specified the value of the work function for their photocell as: $\quad(\phi / e)_{P A S C O}=1.43 \pm 0.03 \mathrm{~V}$

What is the absolute value of the percent difference between your result and the factory specified value?

Percent difference $=\left|\frac{(\phi / e)_{\text {exp }}-(\phi / e)_{P A S C O}}{(\phi / e)_{P A S C O}}\right| \times 100 \%=$ \qquad (\%)

You should prepare the final version of the graph using a computer-graphing program (e.g., MS Excel). These programs offer 'linear fit' or 'trendline' options to obtain the value of the slope and the y-intercept of the best-fit line.

Complete the lab report and return it to the lab TA.

