Student's Name:	Student's Name:		
Lab day & time:	Date:		
Photoelectric Ef	fect (E10) - Data Sheets		
Activity 1: Measurement of the h/e Ratio and the Work Function.			
$\{e = \text{the charge of an electron}\}$	$n = 1.602 \times 10^{-19} C $		

The **stopping voltage** V_S for Mercury line spectrum (on both sides of the white line):

Color	Yellow	Green	Blue	Violet	Ultraviolet
Frequency (Hz)	5.187*10 ¹⁴	5.490*10 ¹⁴	6.879*10 ¹⁴	7.409*10 ¹⁴	8.203*10 ¹⁴
Filter	Yes - yellow	Yes - green	No	No	No
V _S (V) (left side)					
Vs (V) (right side)					
Average stopping voltage VsAv (V)					

Create a graph of the average stopping voltage V_{SAV} (on the vertical axis) vs. frequency f (on the horizontal axis). Find the best-fit straight line. Using the slope and the y-intercept values from the graph, calculate the value of the h/e ratio and the work function divided by the charge of electron ϕ/e . Be sure to include units. If you need help with creation of the straight-line fit (a "trendline" in Excel), then check the pdf file "How to Make a Straight Line Fit in Excel" available in Brightspace course folder.

The " $(h/e)_{exp}$ " value <u>calculated from the slope of the stopping voltage V_{SAV} vs. f graph:</u>

$$(h/e)_{exp} = \underline{\qquad} (V*s)$$

Does your value for Planck's constant divided by the charge of electron $(h/e)_{exp}$ agree with the most accurate experimentally determined value of the $(h/e)_{accurate} = 4.1361*10^{-15} \text{ V*s}$? What is the absolute value of the percent difference between your result and the best experimental value?

Percent difference =
$$\frac{\left| (h/e)_{\text{exp}} - (h/e)_{\text{accurate}} \right|}{(h/e)_{\text{accurate}}} \times 100\% = \underline{\qquad} (\%)$$

The work function divided by the charge of electron ϕ/e value from the y-intercept of the stopping voltage V_{SAV} vs. f graph (see Eq. 2):

$$(\phi/e)_{exp} = \underline{\hspace{1cm}} (V)$$

The equipment manufacturer - PASCO Scientific specified the value of the work function for their photocell as: $(\phi/e)_{PASCO} = 1.43 \pm 0.03 \text{ V}$

What is the absolute value of the percent difference between your result and the factory specified value?

Percent difference =
$$\frac{\left| \left(\phi / e \right)_{\text{exp}} - \left(\phi / e \right)_{PASCO} \right|}{\left(\phi / e \right)_{PASCO}} \times 100\% = \underline{\qquad} (\%)$$

You should prepare the <u>final version of the graph using a computer-graphing program</u> (e.g., MS Excel). These programs offer 'linear fit' or 'trendline' options to obtain the value of the slope and the y-intercept of the best-fit line.

Complete the lab report and return it to the lab TA.